Paper 2 Option G

Question	Scheme	Marks	AOs
1(a)	H ₀ : There is no association between language and gender	B1	1.2
		(1)	
(b)	$\frac{54 \times 85}{150} = 30.6$ *	B1*cso	1.1b
	150		1.10
		(1)	
(c)	Language		
	Expected frequenciesFrenchSpanishMandarin		
	Male 26.43 23.4 15.16	M1	2.1
	Gender Female 34.56 [30.6] 19.83		
	$\chi^{2} = \sum \frac{(O-E)^{2}}{E} = \frac{(23-26.43)^{2}}{26.43} + \dots + \frac{(15-19.83)^{2}}{19.83}$	M1	1.1b
	Awrt <u>3.6/3.7</u>	Al	1.1b
		(3)	
(d)	Degrees of freedom $(3-1)(2-1) \rightarrow$ Critical value $\chi^2_{2,0.01} = 9.210$	M1	3.1b
	As $\sum \frac{(O-E)^2}{E} < 9.210$, the null hypothesis is not rejected	A1	2.2b
		(2)	
(e)	Still not rejected since $\sum \frac{(O-E)^2}{E} < \chi^2_{2,0.1} = 4.605$	B1	2.4
		(1)	
		(8 n	1arks)
Notes:			
(a) B1: For	correct hypothesis in context		
(b)			
B1*: For	a correct calculation leading to the given answer and no errors seen		
	attempt at $\frac{(\text{Row Total})(\text{Column Total})}{(\text{Grand Total})}$ to find expected frequencies		
	applying $\sum \frac{(O-E)^2}{E}$		
A1: awr	t 3.6 or 3.7		
(d)			
	using degrees of freedom to set up a χ^2 model critical value		
	correct comparison and conclusion		
(e) A1ft: For	correct conclusion with supporting reason		

Further Statistics 1 Mark Scheme (Section A)

www.mymathscloud.com

on Scheme	Marks	AOs
-4 = 2 - 5E(X)	M1	3.1a
E(X) = 1.2		
$-1 \times c + 0 \times a + 1 \times a + 2 \times b + 3 \times c = 1.2$	M1	1.1b
a + 2b + 2c = 1.2 1		
$P(Y \ge -3) = 0.45$ gives $P(2-5X \ge -3) = 0.45$		
i.e. $P(X \le 1) = 0.45$	M1	2.1
2a + c = 0.45 2		
2a+b+2c=1	M1	1.1b
$ \begin{pmatrix} 1 & 2 & 2 \\ 2 & 0 & 1 \\ 2 & 1 & 2 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 1.2 \\ 0.45 \\ 1 \end{pmatrix} \Rightarrow \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 1 & 2 & -2 \\ 2 & 2 & -3 \\ -2 & -3 & 4 \end{pmatrix} \begin{pmatrix} 1.2 \\ 0.45 \\ 1 \end{pmatrix} \underline{\text{or}} $	M1	1.1b
e.g. $3 - 2 \Rightarrow b + c = 0.55$ sub. $2(b + c)$ into $1 \Rightarrow a = 0.1$ etc		
a = 0.1 $b = 0.3$ $c = 0.25$	A1	1.1b
	A1	1.1b
$V_{\rm ex}(V) = 75 + (-4)^2 + \pi - 50$	(7)	1.1-
$Var(Y) = 75 - (-4)^2 \text{ or } 59$	M1	1.1a
$[Var(Y) = 5^{2}Var(X) \text{ implies}] Var(X) = 2.36$	A1	1.2
	(2)	
$P(Y > X) = P(2 - 5X > X) \rightarrow P(X < \frac{1}{3})$	M1	3.1a
$P(X < \frac{1}{3}) = a + c = 0.35$	Alft	1.1b
	(2)	

(a)

M1: For using given information to find an expression for E(X) i.e. use of E(Y) = 2 - 5E(X)

M1: For use of $\sum x P(X = x) = `1.2'$

M1: For use of $P(Y \ge -3) = 0.45$ to set up the argument for solving by forming an equation in *a* and *c*

M1: For use of $\sum P(X = x) = 1$

M1: For solving their 3 linear equations (matrix or elimination)

- A1: For any 2 of a, b or c correct
- A1: For all 3 correct values

Question 2 notes continued:

Another method for part (a) is:

- www.mymathscloud.com M1: For using given information to find the probability distribution for Y leading to an expression for E(Y)
- M1: For use of $\sum y P(Y = y) = -4$
- M1: For use of P($Y \ge -3$) = 0.45 to set up the argument for solving by forming an equation in *a* and *c*
- For use of $\sum P(Y = y) = 1$ M1:
- M1: For solving their 3 linear equations (matrix or elimination)
- A1: For any 2 of a, b or c correct
- For all 3 correct values A1:

(b)

- For use of $Var(Y) = E(Y^2) [E(Y)]^2$ (may be implied by a correct answer) M1:
- For use of $Var(aX) = a^2 Var(X)$ to reach 2.36 or exact equivalent A1:

(c)

M1: For rearranging to the form $P(X \le k)$

A1ft: 0.1' + 0.025' (provided their *a* and *c* and their *a* + *c* are all probabilities)

Another method for part (c) is:

For comparing distribution of X with distribution of Y to identify X = -1 and X = 0M1:

A1ft: '0.1' + '025' (provided their a and c and their a + c are all probabilities)

		mm	AOs
Question	Scheme	Marks	AOs
3(a)	$X \sim Po(2.6)$ $Y \sim Po(1.2)$		
	P(each hire 2 in 1 hour) = $P(X=2) \times P(Y=2) = 0.25104 \times 0.21685$	M1	3.3
	= 0.05444 awrt <u>0.0544</u>	A1	1.1b
		(2)	
(b)	$W = X + Y \rightarrow W \sim \text{Po}(3.8)$	M1	3.4
	P(W=3) = 0.20458 awrt <u>0.205</u>	A1	1.1b
		(2)	
(c)	$T \sim \text{Po}((2.6+1.2) \times 2)$	M1	3.3
	P(T < 9) = 0.64819 awrt <u>0.648</u>	A1	1.1b
		(2)	
(d)	(i) Mean = $np = 2.4$	B1	1.1b
	(ii) Variance = $np(1-p) = 2.3904$ awrt <u>2.39</u>	B1	1.1b
		(2)	
(e)	(i) $[D \sim Po(2.4) P(D \leq 4)]$ = 0.9041 awrt 0.904	B1	1.1b
	= 0.9041 awrt <u>0.904</u> (ii) Since <i>n</i> is large and <i>p</i> is small/mean is approximately equal to variance	B1	2.4
		(2)	
			narks)
lotes:			
imj A1: aw b) M1: For	r $P(X=2) \times P(Y=2)$ from $X \sim Po(2.6)$ and $Y \sim Po(1.2)$ i.e. correct module by correct answer) rt 0.0544 r combining Poisson distributions and use of Po('3.8') (may be implied		e
	swer)		
c) M1: For by	rt 0.205 r setting up a new model and attempting mean of Poisson distribution (r correct answer) rt 0.648	nay be imp	lied
(d)(i)	r 2.4		
(d)(ii)			
B1: For	r awrt 2.39		
(e)(i)			
	t awrt 0.904		

		mm	AOs
Question	Scheme	Marks	AOs
4(a)	(i) $P(X=1) = 0.34523$ awrt <u>0.345</u>	B1	1.1b
	(ii) $P(X \le 4) = 0.98575$ awrt <u>0.986</u>	B1	1.1b
		(2)	
(b)	$\frac{(0 \times 10) + 1 \times 16 + 2 \times 7 + 3 \times 4 + 4 \times 2 + (5 \times 0) + 6 \times 1}{40} = 1.4^{*}$	B1*cso	1.1b
		(1)	
(c)	$r = 40 \times 0.34523$, $s = 40 \times 1 - 0.986$	M1	3.4
	$r = \underline{13.81} \qquad \qquad s = \underline{0.57}$	A1ft	1.1b
		(2)	
(d)	H ₀ : The Poisson distribution is a suitable model H ₁ : The Poisson distribution is not a suitable model	B1	3.4
	[Cells are combined when expected frequencies < 5] So combine the last 3 cells	M1	2.1
	$\chi^{2} = \sum \frac{(O-E)^{2}}{E} = \frac{(10-9.86)^{2}}{9.86} + \dots + \frac{(7-(4.51+1.58+0.57))^{2}}{(4.51+1.58+0.57)}$	M1	1.1b
	awrt <u>1.1</u>	A1	1.1b
	Degrees of freedom = $4 - 1 - 1 = 2$	B1	3.1b
	(Do not reject H ₀ since $1.10 < \chi^2_{2,(0.05)} = 5.991$). The number of mortgages approved each week follows a Poisson distribution	A1	3.5a
		(6)	
			narks)
lotes:			,
a)(ii)	0.345		
B1: awrt (b)	0.986		
	a fully correct calculation leading to given answer with no errors seen		
	attempt at <i>r</i> or <i>s</i> (may be implied by correct answers) both values correct (follow through their answers to part (a))		
	both hypotheses correct (lambda should not be defined so correct use o understanding the need to combine cells before calculating the test stati- lied)		· /
M1: For a	attempt to find the test statistic using $\chi^2 = \sum \frac{(O-E)^2}{E}$		
	1.1 realising that there are 2 degrees of freedom leading to a critical value $\chi_2^2(0.05) = 5.991$		
	cluding that a Poisson model is suitable for the number of mortgages ap	oproved ea	ıch

	tatistics 2 Mark Sche	me (Sec	tion	B)						
uestion			Sche		_,					Marks	AOs
5(a)	Competitor	Α	В	C	D	Е	F	G	Н	_	
	Judge 1's ranks	8	4	7	6	5	1	3	2	M1	
	Judge 2's ranks	8	5	6	7	3	1	4	2		1.1b
	d^2	0	1	1	1	4	0	1	0	M1	
											1.1b
	$\sum d^2 = 8$ $r_s = 1 - \frac{6 \times 8}{8(64 - 1)}$										
	$r_s = 1 - \frac{6 \times 8}{8(64 - 1)}$									dM1	1.1b
	$r_s = 0.90476 \dots$						a	wrt <u>0</u>	.905	A1	1.1b
										(4)	
(b)	Ho: $\rho_s = 0$ H1: $\rho_s > 0$								B1	2.5	
	Critical value $\rho_s = 0.8333$									B1	1.1b
	$r_s = 0.905$ lies in the critical region/reject H ₀									M1	2.1
	The two judges are in agreement.								A1	2.2b	
									(4)		
(c)	E.g. The data is unlikely to be from a bivariate normal distribution (competitor A)/The emphasis here is on the ranks and not the individual scores.						B1	2.4			
										(1)	
(d)	Both show positive correlation, but the judges agree more on the beam (since 0.952 is closer to 1)								B1	2.2b	
										(1)	
										(10 ו	narks)
M1: For M1: Dep	an attempt to rank at least an attempt at d^2 row for the bendent on 1 st M1 for use o	eir ra	inks				-	$\sum d^2$			
<u>1: For</u> b)	awrt 0.905										
B1: Bot	h hypotheses stated in term	ns of ,	\mathcal{O}_s								
	correct critical value	ith +1-	air (f	022	2,						
	comparing their '0.905' w a correct contextual conclu					lictio	ns se	en			
c)	a correct explanation to su										
d)	a correct comparison of th				-						
	a correct comparison of th	POT	CHIQT1	n c c	ATT101						

Further Statistics 2 Mark Scheme (Section B)

uestion	Scheme	Marks	A0c
6(a)		Marks	AOs
U(d)	$P(X < 3) = \int_{1}^{3} \frac{1}{18} (11 - 2x) dx \underline{or} \text{area of trapezium}$	M1	1.1a
	$= \left[\frac{1}{18}(11x - x^2)\right]_{1}^{3}$		
	$=\frac{7}{9}$	A1	1.1b
	9	(2)	
(b)	Since $P(X < 3) > 0.75$, the upper quartile is less than 3	B1ft	2.2a
		(1)	
(c)	$E(X^{2}) = \int_{1}^{4} \frac{1}{18} x^{2} (11 - 2x) dx \left[= \frac{23}{4} \right]$	M1	1.1b
	$\operatorname{Var}(X) = \frac{23}{4} - \left(\frac{9}{4}\right)^2$	M1	1.1b
	$=\frac{11}{16}$	A1	1.1b
		(3)	
(d)	$F(4) = 1 \rightarrow \frac{1}{18}(11(4) - 4^2 + c) = 1$ <u>Or</u>	M1	2.1
	$F(1) = 0 \rightarrow \frac{1}{18}(11(1) - 1^2 + c) = 0$		
	c = -10 *	A1*cso	1.1b
(e)	F(m) = 0.5	(2) M1	1.2
	$\frac{1}{18}(11m - m^2 - 10) = 0.5 \rightarrow m^2 - 11m + 19 = 0 \text{ and attempt to solve}$	M1	1.1b
	$m = \frac{11 \pm \sqrt{11^2 - 4(19)}}{2} [= 2.1458 \text{ or } 8.8541]$		
	m = 2.1458 <u>2.15 (only)</u>	A1	2.2a
		(3)	
		(11 n	narks)
otes:)			
	integrating $f(x)$ with correct limits or for finding area of trapezium		
: For	$\frac{7}{9}$ (allow awrt 0.778)		
ft: For c	comparison of their (a) with 0.75 and concluding that the upper quartile	e is less that	an 3
)	an attempt to find $E(X^2)$		
	use of Var(X) = E(X ²) - $\left(\frac{9}{4}\right)^{2}$		

Question 6 notes continued:

(d)

M1: For use of F(4) = 1 or F(1) = 0

A1*cso: For a fully correct solution leading to given answer with no errors seen

www.mymainscloud.com

(e)

324

M1: For use of F(m) = 0.5

M1: For setting up quadratic and attempt to solve

A1: For 2.15 and rejecting the other solution

		m	AOs
uestion	Scheme	Marks	AOs
7(a)	$r = \frac{284.4 - \frac{251(12)}{10}}{\sqrt{10.36 \times 40.9}}$	M1	1.1b
	r = -0.79671 awrt <u>-0.797</u>	A1	1.1b
		(2)	
(b)	$b = \frac{'-16.4'}{10.36}$	M1	3.3
	$a = \frac{251}{10} - b'\frac{12}{10}$	M1	1.1b
	y = 27.0 - 1.58 x	A1	1.1b
		(3)	
(c)	y = [27.0 - 1.58(2)] = 23.84 awrt 23.8	B1ft	3.4
		(1)	
(d)	RSS = $40.9 - \frac{(-16.4)^2}{10.36}$	M1	1.1b
	RSS = 14.938 awrt <u>14.9</u>	A1	1.1b
		(2)	ļ
(e)	$\sum \text{residuals} = 0 \to -0.63 + (-0.32) + \dots + f + (-1.88) = 0$	M1	3.1a
	f= <u>-1.04</u>	Al	1.1b
•		(2)	
f)	The residuals should be randomly scattered above and below zero so linear model may not be appropriate	B1	3.5b
		(1)	
s:		(11 r	narks)
For a For a For u	a complete correct method for finding <i>r</i> awrt –0.797 use of a correct model i.e. a correct expression for <i>b</i> (ft their S_{xy}) use of a correct model i.e. a correct (ft) expression for <i>a</i> y = 27.0 - 1.58x [a correct answer here can imply both method marks]		
	awrt 23.8 (evaluating their model found in part (b) with $x = 2$)		
	a correct expression for RSS awrt 14.9		
	use of \sum residuals = 0 [Use of regression equation needs correct sign] -1.04		
For	identifying that the residuals are not randomly scattered above and bel cluding the linear regression model may not be appropriate	ow zero an	d

		mm	AOs
Question	Scheme	Marks	AOs
8(a)	$\leftarrow \frac{\frac{1}{8}}{-3} \qquad \qquad$	B1 (shape) B1 (labels)	1.1b 1.1b
-		(2)	
(b)	$P(X < 2(k - X)) = P(X < \frac{2}{3}k)$	M1	3.1a
-	$\frac{\frac{2}{3}k - (-3)}{5 - (-3)} = 0.25$	M1	1.1b
-	$k = -\frac{3}{2}$	A1	1.1b
-	Ζ	(3)	
(c)	$E(X^{3}) = \int_{-3}^{5} \frac{1}{5 - (-3)} x^{3} dx$	M1	2.1
	$= \left[\frac{1}{32}x^4\right]_{-3}^5 = \frac{1}{32}(5^4 - (-3)^4)$	dM1	1.1b
-	=17*	A1*cso	1.1b
		(3)	narks)
lotes:		(01	11 KS)
	correct shape correct labels		
(b) M1: For s	implifying to $P(X < \frac{2}{3}k)$		
	equating probability expression to 0.25		
A1: For -			
	-		
	Expression of the set of the se		
A1: For s	ubstitution and attempt to solve		
A1: For -	$-\frac{3}{2}$		
M1: For u	ntegrating $x^3 f(x)$ use of correct limits (dependent on previous M1) ully correct solution leading to the given answer with no errors seen		