Paper 2 Option G

Further Statistics 1 Mark Scheme (Section A)

Question	Scheme					Marks	AOs
1(a)	H_{0} : There is no association between language and gender					B1	1.2
						(1)	
(b)	$\frac{54 \times 85}{150}=30.6 \quad *$					B1*cso	1.1b
						(1)	
(c)	Expected frequencies		Language			M1	2.1
			French	Spanish	Mandarin		
	Gender	Male	26.43...	23.4	15.16...		
		Female	34.56...	[30.6]	19.83...		
	$\chi^{2}=\sum \frac{(O-E)^{2}}{E}=\frac{(23-26.43)^{2}}{26.43}+\ldots+\frac{(15-19.83)^{2}}{19.83}$					M1 A1	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
						(3)	
(d)	Degrees of freedom (3-1)(2-1) \rightarrow Critical value $\chi_{2,0.01}^{2}=9.210$					M1	3.1b
	As $\sum \frac{(O-E)^{2}}{E}<9.210$, the null hypothesis is not rejected					A1	2.2b
						(2)	
(e)	Still not rejected since $\sum \frac{(O-E)^{2}}{E}<\chi_{2,0.1}^{2}=4.605$					B1	2.4
						(1)	
(8 marks)							
Notes:							
(a) B1: For	rrect hypothesis	context					
(b) B1 $\%$ For	B1*: For a correct calculation leading to the given answer and no errors seen						
(c) M1: For M1: For A1: aw	$\begin{aligned} & \text { tempt at } \frac{\text { (Row T }}{} \\ & \text { plying } \sum \frac{(O-}{E} \\ & .6 \text { or } 3.7 \end{aligned}$		Total)	ind expec	frequencies		
(d) M1: For using degrees of freedom to set up a χ^{2} model critical value A1: For correct comparison and conclusion							
(e) A1ft: For correct conclusion with supporting reason							

Question	Scheme	Marks	AOs		
2(a)	$-4=2-5 \mathrm{E}(X)$	M1	3.1a		
	$\mathrm{E}(X)=1.2$				
	$-1 \times{ }_{c}+0 \times a+1 \times a+2 \times b+3 \times{ }_{c}=1.2$	M1	1.1 b		
	$a+2 b+2 c=1.2 \quad 1$				
	$\begin{aligned} & \mathrm{P}(Y \geqslant-3)=0.45 \text { gives } \mathrm{P}(2-5 X \geqslant-3)=0.45 \\ & \text { i.e. } \mathrm{P}(X \leqslant 1)=0.45 \end{aligned}$	M1	2.1		
	$2 a+c=0.45 \quad 2$				
	$2 a+b+2 c=1 \quad 3$	M1	1.1b		
	$\left(\begin{array}{lll}1 & 2 & 2 \\ 2 & 0 & 1 \\ 2 & 1 & 2\end{array}\right)\left(\begin{array}{l}a \\ b \\ c\end{array}\right)=\left(\begin{array}{c}1.2 \\ 0.45 \\ 1\end{array}\right) \Rightarrow\left(\begin{array}{l}a \\ b \\ c\end{array}\right)=\left(\begin{array}{ccc}1 & 2 & -2 \\ 2 & 2 & -3 \\ -2 & -3 & 4\end{array}\right)\left(\begin{array}{c}1.2 \\ 0.45 \\ 1\end{array}\right) \underline{\mathrm{or}}$	M1	1.1b		
	e.g. $3-2 \Rightarrow b+c=0.55$ sub. $2(b+c)$ into $1 \Rightarrow a=0.1$ etc				
	$a=0.1 \quad b=0.3 \quad c=0.25$	A1	1.1 b		
		A1	1.1b		
		(7)			
(b)	$\operatorname{Var}(Y)=75-(-4)^{2}$ or 59	M1	1.1a		
	$\left[\operatorname{Var}(Y)=5^{2} \operatorname{Var}(X)\right.$ implies] $\operatorname{Var}(X)=2.36$	A1	1.2		
		(2)			
(c)	$\mathrm{P}(Y>X)=\mathrm{P}(2-5 X>X) \rightarrow \mathrm{P}\left(X<\frac{1}{3}\right)$	M1	3.1a		
	$\mathrm{P}\left(X<\frac{1}{3}\right)=a+c=0.35$	A1ft	1.1b		
		(2)			
(11 marks)					
Notes:					
(a) M1: For using given information to find an expression for $\mathrm{E}(X)$ i.e. use of $\mathrm{E}(Y)=2-5 \mathrm{E}(X)$ M1: For use of $\sum x \mathrm{P}(X=x)={ }^{\prime} 1.2$ '					
M1: For use of $\mathrm{P}(Y \geqslant-3)=0.45$ to set up the argument for solving by forming an equation in a and c					
M1: For use of $\sum \mathrm{P}(X=x)=1$					
M1: For solving their 3 linear equations (matrix or elimination) A1: For any 2 of a, b or c correct A1: For all 3 correct values					

Question 2 notes continued:

Another method for part (a) is:
M1: For using given information to find the probability distribution for Y leading to an expression for $\mathrm{E}(Y)$
M1: For use of $\sum y \mathrm{P}(Y=y)=-4$
M1: For use of $\mathrm{P}(Y \geqslant-3)=0.45$ to set up the argument for solving by forming an equation in a and c
M1: For use of $\sum \mathrm{P}(Y=y)=1$
M1: For solving their 3 linear equations (matrix or elimination)
A1: For any 2 of a, b or c correct
A1: For all 3 correct values
(b)

M1: For use of $\operatorname{Var}(Y)=\mathrm{E}\left(Y^{2}\right)-[\mathrm{E}(Y)]^{2} \quad$ (may be implied by a correct answer)
A1: For use of $\operatorname{Var}(a X)=a^{2} \operatorname{Var}(X)$ to reach 2.36 or exact equivalent
(c)

M1: For rearranging to the form $\mathrm{P}(X<k)$
A1ft: $0.1^{\prime}+{ }^{\prime} 025^{\prime}$ (provided their a and c and their $a+c$ are all probabilities)

Another method for part (c) is:

M1: \quad For comparing distribution of X with distribution of Y to identify $X=-1$ and $X=0$
A1ft: $\quad{ }^{\prime} 0.1^{\prime}+{ }^{\prime} 025$ ' (provided their a and c and their $a+c$ are all probabilities)

Questior	Scheme	Marks	AOs
3(a)	$X \sim \operatorname{Po}(2.6) \quad Y \sim \operatorname{Po}(1.2)$		
	P (each hire 2 in 1 hour) $=\mathrm{P}(X=2) \times \mathrm{P}(Y=2)=0.25104 \ldots \times 0.21685 \ldots$	M1	3.3
	$=0.05444 \ldots$ awrt $\underline{0.0544}$	A1	1.1b
		(2)	
(b)	$W=X+Y \rightarrow W \sim \operatorname{Po}(3.8)$	M1	3.4
	$\mathrm{P}(W=3)=0.20458 \ldots . \quad$ awrt $\underline{\mathbf{0 . 2 0 5}}$	A1	1.1b
		(2)	
(c)	$T \sim \operatorname{Po}((2.6+1.2) \times 2)$	M1	3.3
	$\mathrm{P}(T<9)=0.64819 \ldots \quad$ awrt $\underline{\mathbf{0 . 6 4 8}}$	A1	1.1b
		(2)	
(d)	(i) Mean $=n p=\underline{\mathbf{2} .4}$	B1	1.1b
	(ii) Variance $=n p(1-p)=2.3904$ awrt $\underline{\text { 2.39 }}$	B1	1.1b
		(2)	
(e)	$\begin{aligned} & \text { (i) }[D \sim \operatorname{Po}(2.4) \quad \mathrm{P}(D \leqslant 4)] \\ & =0.9041 \ldots \end{aligned}$ $\text { awrt } \underline{0.904}$	B1	1.1b
	(ii) Since n is large and p is small/mean is approximately equal to variance	B1	2.4
		(2)	
(10 marks)			
Notes:			
(a) M1: For imp A1: aw	For $\mathrm{P}(X=2) \times \mathrm{P}(Y=2)$ from $X \sim \operatorname{Po}(2.6)$ and $Y \sim \operatorname{Po}(1.2)$ i.e. correct models (may be implied by correct answer) awrt 0.0544		
(b) M1: For ans A1: aw	For combining Poisson distributions and use of $\operatorname{Po}\left({ }^{\prime} 3.8^{\prime}\right)$ (may be implied by correct answer) awrt 0.205		
(c) M1: For by A1: aw	For setting up a new model and attempting mean of Poisson distribution (may be implied by correct answer) awrt 0.648		
$\begin{aligned} & \text { (d)(i) } \\ & \text { B1: For } \end{aligned}$	For 2.4		
$\begin{aligned} & \text { (d)(ii) } \\ & \text { B1: For } \end{aligned}$	For awrt 2.39		
$\begin{aligned} & \text { (e)(i) } \\ & \text { B1: For } \end{aligned}$	For awrt 0.904		
$\begin{aligned} & \text { (e)(ii) } \\ & \text { B1: For } \end{aligned}$	For a correct explanation to support use of Poisson approximation in this case		

Question	Scheme	Marks	AOs
4(a)	(i) $\mathrm{P}(X=1)=0.34523 \ldots \quad$ awrt $\underline{\mathbf{0 . 3 4 5}}$	B1	1.1b
	(ii) $\mathrm{P}(X \leqslant 4)=0.98575 \ldots$ awrt $\underline{\mathbf{0 . 9 8 6}}$	B1	1.1b
		(2)	
(b)	$\frac{(0 \times 10)+1 \times 16+2 \times 7+3 \times 4+4 \times 2+(5 \times 0)+6 \times 1}{40}=1.4$ *	B1* ${ }^{*}$ cso	1.1b
		(1)	
(c)	$r=40 \times$ '0.34523 $\ldots, \quad s=40 \times 11-0.986 \ldots$,	M1	3.4
	$r=\underline{\mathbf{1 3 . 8 1}} \quad s=\underline{\mathbf{0 . 5 7}}$	A1ft	1.1 b
		(2)	
(d)	H_{0} : The Poisson distribution is a suitable model H_{1} : The Poisson distribution is not a suitable model	B1	3.4
	[Cells are combined when expected frequencies <5] So combine the last 3 cells	M1	2.1
	$\chi^{2}=\sum \frac{(O-E)^{2}}{E}=\frac{(10-9.86)^{2}}{9.86}+\ldots+\frac{(7-(4.51+1.58+0.57))^{2}}{(4.51+1.58+0.57)}$	M1	1.1b
	awrt $\mathbf{1 . 1}$	A1	1.1b
	Degrees of freedom $=4-1-1=2$	B1	3.1b
	(Do not reject H_{0} since $1.10<\chi_{2,(0.05)}^{2}=5.991$). The number of mortgages approved each week follows a Poisson distribution	A1	3.5a
		(6)	
(11 marks)			
Notes:			
$\begin{aligned} & \text { (a)(i) } \\ & \text { B1: awrt } 0.345 \end{aligned}$			
(a)(ii) B1: awrt 0.986			
(b) B1*: For a fully correct calculation leading to given answer with no errors seen			
(c) M1: For attempt at r or s (may be implied by correct answers) A1ft: For both values correct (follow through their answers to part (a))			
(d) B1: For both hypotheses correct (lambda should not be defined so correct use of the model) M1: For understanding the need to combine cells before calculating the test statistic (may be implied)			
M1: For attempt to find the test statistic using $\chi^{2}=\sum \frac{(O-E)^{2}}{E}$ A1: awrt 1.1 B1: For realising that there are 2 degrees of freedom leading to a critical value of $\chi_{2}^{2}(0.05)=5.991$			
A1: Concluding that a Poisson model is suitable for the number of mortgages approved each week			

Further Statistics $\mathbf{2}$ Mark Scheme (Section B)

Question	Scheme	Marks	AOs
6(a)	$\mathrm{P}(X<3)=\int_{1}^{3} \frac{1}{18}(11-2 x) \mathrm{d} x \quad$ or \quad area of trapezium	M1	1.1a
	$=\left[\frac{1}{18}\left(11 x-x^{2}\right)\right]_{1}^{3}$		
	$=\frac{7}{9}$	A1	1.1b
		(2)	
(b)	Since $\mathrm{P}(X<3)>0.75$, the upper quartile is less than 3	B1ft	2.2a
		(1)	
(c)	$\mathrm{E}\left(X^{2}\right)=\int_{1}^{4} \frac{1}{18} x^{2}(11-2 x) \mathrm{d} x\left[=\frac{23}{4}\right]$	M1	1.1b
	$\operatorname{Var}(X)=\frac{23}{4}-\left(\frac{9}{4}\right)^{2}$	M1	1.1b
	$=\frac{11}{16}$	A1	1.1b
		(3)	
(d)	$\begin{gathered} \mathrm{F}(4)=1 \rightarrow \frac{1}{18}\left(11(4)-4^{2}+c\right)=1 \quad \text { or } \\ \mathrm{F}(1)=0 \rightarrow \frac{1}{18}\left(11(1)-1^{2}+c\right)=0 \end{gathered}$	M1	2.1
	$c=-10$ *	A1*cso	1.1b
		(2)	
(e)	$\mathrm{F}(m)=0.5$	M1	1.2
	$\frac{1}{18}\left(11 m-m^{2}-10\right)=0.5 \rightarrow m^{2}-11 m+19=0$ and attempt to solve	M1	1.1b
	$m=\frac{11 \pm \sqrt{11^{2}-4(19)}}{2}[=2.1458 \text { or } 8.8541 \ldots]$		
	$m=2.1458 \ldots \quad \underline{\mathbf{2 . 1 5}}$ (only)	A1	2.2a
		(3)	
(11 marks)			
Notes:			
For integrating $\mathrm{f}(x)$ with correct limits or for finding area of trapezium For $\frac{7}{9}$ (allow awrt 0.778)			
(b) B1ft: For	For comparison of their (a) with 0.75 and concluding that the upper quartile is less than 3		
(c) M1: For an attempt to find $\mathrm{E}\left(X^{2}\right)$ M1: For use of $\operatorname{Var}(X)=\mathrm{E}\left(X^{2}\right)-\left(\frac{9}{4}\right)^{2}$ A1: For $\frac{11}{16}$ (allow awrt 0.688)(M1 marks may be implied by a correct answer)			

Question 6 notes continued:

(d)

M1: \quad For use of $\mathrm{F}(4)=1$ or $\mathrm{F}(1)=0$
A1*cso: For a fully correct solution leading to given answer with no errors seen
(e)

M1: \quad For use of $\mathrm{F}(m)=0.5$
M1: For setting up quadratic and attempt to solve
A1: For 2.15 and rejecting the other solution

Question	Scheme	Marks	AOs
7(a)	$r=\frac{284.4-\frac{251(12)}{10}}{\sqrt{10.36 \times 40.9}}$	M1	1.1b
	$r=-0.79671 \ldots$ awrt $\underline{\mathbf{0 . 7 9 7}}$	A1	1.1b
		(2)	
(b)	$b=\frac{'-16.4}{10.36}$	M1	3.3
	$a=\frac{251}{10}-b^{\prime} \frac{12}{10}$	M1	1.1b
	$y=27.0-1.58 x$	A1	1.1b
		(3)	
(c)	$y=[27.0-1.58(2)]=23.84 \quad$ awrt $\underline{\mathbf{2 3 . 8}}$	B1ft	3.4
		(1)	
(d)	RSS $=40.9-\frac{(-16.4)^{2}}{10.36}$	M1	1.1b
	$\mathrm{RSS}=14.938 \ldots$ awrt $\underline{\mathbf{1 4 . 9}}$	A1	1.1b
		(2)	
(e)	\sum residuals $=0 \rightarrow-0.63+(-0.32)+\ldots+f+(-1.88)=0$	M1	3.1a
	$f=\underline{\mathbf{- 1 . 0 4}}$	A1	1.1b
		(2)	
(f)	The residuals should be randomly scattered above and below zero so linear model may not be appropriate	B1	3.5 b
		(1)	
(11 marks)			
Notes:			
(a) M1: For a complete correct method for finding r A1: For awrt -0.797			
1: For use of a correct model i.e. a correct expression for b (ft their $\mathrm{S}_{x y}$) For use of a correct model i.e. a correct (ft) expression for a For $y=27.0-1.58 x$ [a correct answer here can imply both method marks]			
(c) B1: Fo	B1: For awrt 23.8 (evaluating their model found in part (b) with $x=2$)		
(d) M1: Fo A1: \qquad	For a correct expression for RSS For awrt 14.9		
(e) M1: A1:	For use of \sum residuals $=0$ [Use of regression equation needs correct sign] For -1.04		
(f) B1: For identifying that the residuals are not randomly scattered above and below zero and concluding the linear regression model may not be appropriate			

Question	Scheme	Marks	AOs
8(a)		$\begin{gathered} \text { B1 } \\ \text { (shape) } \\ \text { B1 } \\ \text { (labels) } \end{gathered}$	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
		(2)	
(b)	$\mathrm{P}(X<2(k-X))=\mathrm{P}\left(X<\frac{2}{3} k\right)$	M1	3.1a
	$\frac{\frac{2}{3} k-(-3)}{5-(-3)}=0.25$	M1	1.1b
	$k=-\frac{3}{2}$	A1	1.1b
		(3)	
(c)	$\mathrm{E}\left(X^{3}\right)=\int_{-3}^{5} \frac{1}{5-(-3)} x^{3} \mathrm{~d} x$	M1	2.1
	$=\left[\frac{1}{32} x^{4}\right]_{-3}^{5}=\frac{1}{32}\left(5^{4}-(-3)^{4}\right)$	dM1	1.1b
	$=17 *$	A1*cso	1.1b
		(3)	
(8 marks)			
Notes:			
(a) B1: For correct shape B1: For correct labels			
(b) M1: For simplifying to $\mathrm{P}\left(X<\frac{2}{3} k\right)$ M1: For equating probability expression to 0.25 A1: \quad For $-\frac{3}{2}$			
Another method for part (b) is: M1: For understanding $2[k-x]=-1$ and $x=-1$ M1: For substitution and attempt to solve A1: \quad For $-\frac{3}{2}$			
(c) B1: For integrating $x^{3} \mathrm{f}(x)$ M1: For use of correct limits (dependent on previous M1) A1*: For fully correct solution leading to the given answer with no errors seen			

